
ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

1EIF 01-3

1

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

Bertrand Meyer

© Bertrand Meyer, 1995-2001

http://eiffel.com

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

2EIF 01-3

2

SUPPORTING MATERIAL

See chapter 32 of

where this discussion is complemented by its extensions to persistence
and object-oriented databases.

See: http://eiffel.com

(File doc/oosc.html)

Object-Oriented Software Construction,
second edition, Prentice Hall, 1997

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

3EIF 01-3

3

PLAN

1. The question.

2. The constraints.

3. A solution.

4. Example sketches.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

4EIF 01-3

4

THE GOAL

Provide a simple, general, easy to use concurrency and distribution
mechanism for programming concurrent applications:

• Internet and Web programming.

• Client-server applications.

• Distributed processing.

• Multi-threading.

• Multiple processes (Unix, Windows 95, Windows NT).

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

5EIF 01-3

5

THE QUESTION

What is the simplest extension of object
technology that will support all forms of
concurrent computation — in an elegant,
general and efficient way?

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

6EIF 01-3

6

THE BASIC MECHANISM
OF OBJECT-ORIENTED COMPUTATION

Feature call (message passing):

x ?f (a)

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

7EIF 01-3

7

TYPES OF CONCURRENCY

Internet programming

Threads (e.g. Posix, Solaris, Java)

Unix / Windows processes

Local network

Coroutines

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

8EIF 01-3

8

CONCURRENT O-O PROGRAMMING SHOULD BE EASY!

(BUT: IT’S NOT.)

Analogies between objects/classes and processes/process-types:

1• General decentralized structure, independent modules.

2• Encapsulated behavior (a single cycle for a process; any number of
routines for a class).

3• Local variables (attributes of a class, variables of a process or process
type).

4• Persistent data, keeping its value between successive activations.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

9EIF 01-3

9

BUT THE ANALOGY
BREAKS DOWN QUICKLY...

... and leaves room to apparent incompatibilities:

• Classes are repositories of services; it is fundamental that they
should be able to support more than one.

• How will processes serve each other’s requests?

• The "inheritance anomaly"

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

10EIF 01-3

10

CAPTURING COMMON BEHAVIORS

deferred class PROCESS feature

 live is

-- General structure with variants.

do

from setup until over loop

step

end

finalize

end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

11EIF 01-3

11

feature {NONE}

 setup is deferred end

 over: BOOLEAN is deferred end

 step is deferred end

 finalize is deferred end

end

Why limit ourselves to just one behavior when we can have as
many as we want?

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

12EIF 01-3

12

A PRINTER MECHANISM

class PRINTER inherit
 PROCESS

rename over as off_line, finalize as stop end

feature

 stop is
-- Go off-line.

do off_line := true end
feature

 step is
-- Execute individual actions of an iteration step.

do
start_job; process_job; finish_job

end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

13EIF 01-3

13

A PRINTER MECHANISM (Continued)

feature {NONE}

 setup is
do ... end

 start_job is
do ... end

 process_job is
do ... end

 finish_job is
do ... end

end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

14EIF 01-3

14

OTHER POSSIBLE FEATURES:

print_diagnostics

prepare_for_maintenance

restart_job

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

15EIF 01-3

15

THE BASIC TRIANGLE
OF COMPUTATION

Computing consists of applying operations to objects; to do so requires
the appropriate mechanisms – processors.

OBJECTSOPERATIONS

PROCESSORS

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

16EIF 01-3

16

SEPARATE ENTITIES

A call of the form x? f (a) will have a different semantics depending on
whether Current and x are handled by the same or different processors.

The semantics must of course be immediately clear from the software
text. Need to declare whether client processor is the same as supplier
processor or another.

Contrast with the usual

which guarantees that objects attached to x will be handled by the same
processor as the current object.

x: separate A

x: A

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

17EIF 01-3

17

CONSISTENCY RULE

In the assignment

x := y

if the source y is separate, the target x must be separate too.

Same rule for argument passing.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

18EIF 01-3

18

SEPARATE ENTITIES AND CLASSES

b: separate BOUNDED_QUEUE [SOME_TYPE]

or:

separate class BOUNDED_BUFFER [G] inherit

 BOUNDED_QUEUE [G]

end

x: BOUNDED_BUFFER [SOME_TYPE]

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

19EIF 01-3

19

CREATION

If x is separate, then the creation instruction

create x

grabs a new processor, physical or virtual, and assigns it to
handle the object.

Also: it is possible to obtain a separate object as the result of a
function. So processors can be allocated outside of Eiffel text
proper.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

20EIF 01-3

20

COMMENTS

“Separate” declaration does not specify the processor.

Semantic difference between sequential and concurrent
computation narrowed down to difference for separate calls:

• Precondition semantics

• Argument passing semantics

• Creation semantics.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

21EIF 01-3

21

PROCESSOR ASSIGNMENT

The assignment of actual physical resources to (virtual) processors) is
entirely dynamic and EXTERNAL to the software text.

Simple notation: Concurrency Control File (CCF)

creation

proc1: sales.microsoft.com (2),
coffees.whitehouse.gov (5), ...

proc2: 89.9.200.151 (1), ...

Physical resources may be Internet nodes, threads, Unix or Windows
processes, etc.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

22EIF 01-3

22

REFERRING TO EXTERNAL OBJECTS

With

a: separate SOME_CLASS

the value of a at run time is a reference to an object handled by another
processor. (Implemented as a proxy object.)

The normal Eiffel clone or deep_clone mechanism would result in
inconsistencies (and violates the type constraints).

New mechanism in the Kernel library (ELKS, Eiffel Library Kernel
Standard):

b := deep_import (a)

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

23EIF 01-3

23

PREDEFINED CONSTRUCTS AND LIBRARIES

Define specific details (how many processors...) and scheduling
policies through libraries.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

24EIF 01-3

24

DESIGN BY CONTRACT
class BOUNDED_QUEUE [G] feature

put (x: G) is
-- Add x to queue.

do ...

end

remove: G is
-- Delete oldest element from queue.

require
not empty

do ...
ensure

not full
end

1

maxcount

next

oldest

capacity
require

not full

ensure
not empty

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

25EIF 01-3

25

THE CONTRACT MODEL (Continued)

item: is
-- Oldest element.

require
not empty

do
Result := ...

end
 ...

invariant

maxcount = capacity – 1
 0 <= oldest; oldest <= capacity
 0 <= next; next <= capacity
 abs (next – oldest) < capacity
end

1

maxcount

next

oldest

capacity

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

26EIF 01-3

26

THE CONTRACT OF A FEATURE

put OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Make sure queue not full.
(From postcondition:)

Make queue not empty, x added.

Supplier
(Satisfy postcondition:)

Insert x, making sure
queue is not empty.

(From precondition:)

Simpler processing thanks
to assumption that queue
not full.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

27EIF 01-3

27

THE CORRECTNESS OF A CLASS
 create a?make (...)

S1

a?f (...)

a?g (...)

a? f (...)

(1-n) For every exported routine r:

{INV and prer} bodyr {INV and postr}

(1-m) For every creation procedure cp:

{precp} docp {INV}

The worst possible run-time error in object-
oriented software development:

• Producing an object which does not satisfy
the invariant of its own class.

S1S3

S4

S2

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

28EIF 01-3

28

PROVABILITY

Proof rule for routines:

{ INV ? } Body (r) { INV ? }

{ } Call (r) { }

In other words: to prove the validity of calls, it suffices to prove
(once!) the correctnes of the body

p ? Pre (r)
p

q ? Post (r)
q

p ? Pre (r)
p'

q ? Post (r)
q'

all

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

29EIF 01-3

29

EXPRESS MESSAGES

AND THE UNIT OF GRANULARITY

An express message is a message that must be treated right away,
interrupting any current routine call.

• But: how do we preserve the consistency of objects (invariants)?

The model will support a restricted form of express messages, which
does not conflict with provability.

Unit of granularity for mutual exclusion is routine call.

But: can be interrupted, causing an exception.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

30EIF 01-3

30

THE CORRECTNESS OF A CLASS
 create a?make (...)

S1

a?f (...)

a?g (...)

a? f (...)

(1-n) For every exported routine r:

{INV and prer} bodyr {INV and postr}

(1-m) For every creation procedure cp:

{precp} docp {INV}

The worst possible run-time error in object-
oriented software development:

• Producing an object which does not satisfy
the invariant of its own class.

S1S3

S4

S2

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

31EIF 01-3

31

THE CONTRACT OF A FEATURE

put OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Make sure queue not full.
(From postcondition:)

Make queue not empty, x added.

Supplier
(Satisfy postcondition:)

Insert x, making sure
queue is not empty.

(From precondition:)

Simpler processing thanks
to assumption that queue
not full.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

32EIF 01-3

32

WHAT BECOMES OF THE CONTRACT MODEL?
“NO HIDDEN CLAUSES”

q: BOUNDED_QUEUE [X]

a: X
...
if not q ? full then

 q ?put (a)
end

Or:
q? remove

q?put (x)

But: this does not work for separate threads of control!

What do preconditions now mean?

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

33EIF 01-3

33

RESERVING AN OBJECT

q: separate BOUNDED_QUEUE [X]; a: X
...
a := q ? item

... Other instructions (not calling remove) ...

q? remove

How do we guarantee that item and remove apply to the same
buffer element?

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

34EIF 01-3

34

RESERVING AN OBJECT (Continued)

Just use encapsulation. Argument passing serves as reservation. If
object busy (processor not available), block object; processor will
service other object if possible.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

35EIF 01-3

35

RESERVING AN OBJECT (Continued)

With the class as shown on the following page, the call

put (q)

will block until:

• q is available.

• The precondition not q? full is true.

The new rule only affects:

• Separate arguments.

• Precondition clauses which include calls on separate targets (i.e. x? f
with x separate).

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

36EIF 01-3

36

RESERVING AN OBJECT

class BUFFER_ACCESS [X] feature

 put (q: separate BOUNDED_QUEUE [G]; x: G) is

-- Insert x into q, waiting if necessary until there is room.

require
not q? full

do
q?put (x)

ensure

not q? empty

end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

37EIF 01-3

37

RESERVING AN OBJECT (Continued)

remove (q: separate BOUNDED_QUEUE [G]) is
-- Remove an element from q, waiting if necessary
-- until there is such an element.

require
not q?empty

do
q? remove

ensure
not q? full

end

 item (q: separate BOUNDED_QUEUE [G]): G is
-- Oldest element not yet consumed

... Left to reader ...
end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

38EIF 01-3

38

BASIC SEMANTIC RULES

If a is separate, a call of the form

 p (..., a, ...)

will block the client until the object attached to a is available.

In addition, if p has a precondition including a call of the form

require
 ... Other clauses ...
 a ?f

(again for separate a), then the call will block until the precondition is
satisfied.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

39EIF 01-3

39

THE ORIGINAL PROOF RULE

{INV ? } Body (r) { INV ? }

{ } Call (r) { }

p ? Pre (r)
p

q ? Post (r)
q

p ? Pre (r)
p'

q ? Post (r)
q'

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

40EIF 01-3

40

THE NEW PROOF RULE

{INV ? } Body (r) {INV ? }

{ } Call (r) { }

Nonsep_pre (r): set of clauses in r’s precondition which do not involve
any separate calls.

Similarly for Nonsep_post (r).

p? Nonsep_Pre (r)

p q
q? Nonsep_Post(r)

p ? Nonsep_Pre (r)
p'

q ? Nonsep_Post (r)
q'

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

41EIF 01-3

41

WAIT BY NECESSITY

(SOURCE: DENIS CAROMEL)

r (..., t: separate SOME_TYPE, ...) is

 do
...

t?f (...)

other_instructions

end

When do we wait?

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

42EIF 01-3

42

WAIT BY NECESSITY

For example:
r (..., t: separate SOME_TYPE, ...) is

 do
...
t?p (...)

other_instruction_1
...
other_instruction_n

k := t?some_value
 end
Wait on queries (calls to attributes and functions), not procedure calls.

WAIT HERE

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

43EIF 01-3

43

BLOCKING SEMANTICS

IS NOT ALWAYS APPROPRIATE

f: FILE
...
if f /= Void and then f? readable then

 f? some_input_routine

-- some_input_routine is any routine that reads
-- data from the file; its precondition is readable.

end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

44EIF 01-3

44

DUELS

Request immediate service: immediate_service
Accept immediate service: yield

Challenger?

? ?Holder

normal_service immediate_service

insist Challenger waits
Exception in
challenger

yield Challenger waits
Exception in holder;
serve challenger.

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

45EIF 01-3

45

DINING PHILOSOPHERS
ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

46EIF 01-3

46

DINING PHILOSOPHERS

separate class PHILOSOPHER creation

make

inherit

 PROCESS
rename setup as getup end

feature {BUTLER}

 step is
do

think ;
end

eat (left, right)

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

47EIF 01-3

47

feature {NONE}

-- The two required forks:
 left, right: separate FORK

 getup is
-- Take any necessary initialization action.

do ... end

 think is
-- Any appropriate action.

do ... end

eat (l, r: separate FORK) is
-- Eat, having grabbed l and r.

do
...

end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

48EIF 01-3

48

A BINARY TREE CLASS
class BINARY_TREE [G] feature

 left, right: BINARY_TREE [G]

 nodes: INTEGER is
-- Number of nodes in this tree

do
Result := node_count (left) + node_count (right) + 1

end
feature {NONE}
 node_count (b: BINARY_TREE [G]): INTEGER is

-- Number of nodes in b
do

if b /= Void then
Result := b? nodes

end
end

end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

49EIF 01-3

49

A BINARY TREE CLASS: PARALLEL VERSION

separate class BINARY_TREE [G] feature

 left, right: BINARY_TREE [G]

 ... Other features ...

 nodes: INTEGER

 update_nodes is
-- Update nodes to reflect number of nodes in this tree.

do
nodes := 1
compute_nodes (left); compute_nodes (right)
adjust_nodes (left); adjust_nodes (right)

end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

50EIF 01-3

50

feature {NONE}
 compute_nodes (b: BINARY_TREE [G]) is

-- Update information about the number of nodes in b.
do

if b /= Void then
b?update_nodes

end
end

 adjust_nodes (b: BINARY_TREE [G]) is
-- Adjust number of nodes from those in b.

do
if b /= Void then

nodes := nodes + b?nodes
end

end
end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

51EIF 01-3

51

EXAMPLES IN THE BOOK

Coroutines

Locking a resource — semaphores

An elevator control system

A watchdog mechanism (execute an action, but take control back if not
done after t seconds).

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

52EIF 01-3

52

STATUS

Partial implementation.

• Unix (SunOS, Solaris, HP etc.).

• .NET

•

John Potter, UTS

hold a until a.some_condition then

...

end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

53EIF 01-3

53

TWO-LEVEL ARCHITECTURE

As with other Eiffel products (EiffelVision graphical library, EiffelStore
relational database library), 2-level architecture:

• General-purpose top layer (SCOOP).

• Several architecture-specific variants at the bottom layer (SCOOP
handles).

Current handle is process-based. Next: multi-threading implementation.

SCOOP

HANDLE 1 HANDLE 2 HANDLE n

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

54EIF 01-3

54

ISSUES AND FUTURE PLANS

Issues:

• Dual semantics of assertions.

• Rule that target of a separate call must be formal argument.

Hard issues:

• Deadlock avoidance.

• Proof rules and practical proofs (?).

• Fairness.

More work:

• Various implementations (distributed systems, shared memory,
coroutines...).

• Processor-CPU association.

