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SUPPORTING MATERIAL

See chapter 32 of 

where this discussion is complemented by its extensions to persistence
and object-oriented databases. 

See: http://eiffel.com

(File doc/oosc.html)

Object-Oriented Software Construction,
second edition, Prentice Hall, 1997
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PLAN

1. The question.

2. The constraints.

3. A solution.

4. Example sketches.
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THE GOAL

Provide a simple, general, easy to use concurrency and distribution
mechanism for programming concurrent applications:

• Internet and Web programming.

• Client-server applications.

• Distributed processing.

• Multi-threading.

• Multiple processes (Unix, Windows 95, Windows NT).
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THE QUESTION

What is the simplest extension of object
technology that will support all forms of
concurrent computation —  in an elegant,
general and efficient way?
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THE BASIC MECHANISM
OF OBJECT-ORIENTED COMPUTATION

Feature call (message passing):

x ?f (a)
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TYPES OF CONCURRENCY

Internet programming

Threads (e.g. Posix, Solaris, Java)

Unix / Windows processes

Local network

Coroutines
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CONCURRENT O-O PROGRAMMING SHOULD BE EASY!

(BUT: IT’S NOT.)

Analogies between objects/classes and processes/process-types: 

1• General decentralized structure, independent modules.

2• Encapsulated behavior (a single cycle for a process; any number of
routines for a class). 

3• Local variables (attributes of a class, variables of a process or process
type). 

4• Persistent data, keeping its value between successive activations. 
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BUT THE ANALOGY
BREAKS DOWN QUICKLY...

... and leaves room to apparent incompatibilities:

• Classes are repositories of services; it is fundamental that they
should be able to support more than one. 

• How will processes serve each other’s requests?

• The "inheritance anomaly"
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CAPTURING COMMON BEHAVIORS

deferred class PROCESS feature

   live is

-- General structure with variants.

do

from setup until over loop

step

end

finalize

end

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

11EIF 01-3

11

feature {NONE} 

   setup is deferred end

  over: BOOLEAN is deferred end

   step is deferred end

   finalize is deferred end

end

Why limit ourselves to just one behavior when we can have as
many as we want? 

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

12EIF 01-3

12

A PRINTER MECHANISM

class PRINTER inherit
   PROCESS

rename over as off_line, finalize as stop end

feature

   stop is
-- Go off-line.

do off_line := true end
feature

   step is
-- Execute individual actions of an iteration step.

do
start_job; process_job; finish_job

end
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A PRINTER MECHANISM (Continued)

feature {NONE}

   setup is
do ... end

   start_job is
do ... end

   process_job is
do ... end

   finish_job is
do ... end

end
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OTHER POSSIBLE FEATURES: 

print_diagnostics

prepare_for_maintenance

restart_job

ISE Eiffelsoft– Object Excellence

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

15EIF 01-3

15

THE BASIC TRIANGLE
OF COMPUTATION

Computing consists of applying operations to objects; to do so requires
the appropriate mechanisms – processors. 

OBJECTSOPERATIONS

PROCESSORS
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SEPARATE ENTITIES

A call of the form x? f (a) will have a different semantics depending on
whether Current and x are handled by the same or different processors. 

The semantics must of course be immediately clear from the software
text. Need to declare whether client processor is the same as supplier
processor or another. 

Contrast with  the usual

which guarantees that objects attached to x will be handled by the same
processor as the current object. 

x: separate A

x: A
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CONSISTENCY RULE

In the assignment 

x := y

if the source y is separate, the target x must be separate too.

Same rule for argument passing. 
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SEPARATE ENTITIES AND CLASSES

b: separate BOUNDED_QUEUE [SOME_TYPE]

or: 

separate class BOUNDED_BUFFER [G] inherit

   BOUNDED_QUEUE [G]

end

x: BOUNDED_BUFFER [SOME_TYPE]
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CREATION

If x is separate, then the creation instruction 

create x

grabs a new processor, physical or virtual, and assigns it to
handle the object. 

Also: it is possible to obtain a separate object as the result of a
function. So processors can be allocated outside of Eiffel text
proper. 
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COMMENTS

“Separate” declaration does not specify the processor.

Semantic difference between sequential and concurrent
computation narrowed down to difference for separate calls:

• Precondition semantics

• Argument passing semantics

• Creation semantics. 
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PROCESSOR ASSIGNMENT

The assignment of actual physical resources to (virtual) processors) is
entirely dynamic and EXTERNAL to the software text.

Simple notation: Concurrency Control File (CCF)

creation

proc1: sales.microsoft.com (2),
coffees.whitehouse.gov (5), ...

proc2: 89.9.200.151 (1), ...

Physical resources may be Internet nodes, threads, Unix or Windows
processes, etc.
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REFERRING TO EXTERNAL OBJECTS

With

a: separate SOME_CLASS

the value of a at run time is a reference to an object handled by another
processor. (Implemented as a proxy object.)

The normal Eiffel clone or deep_clone mechanism would result in
inconsistencies (and violates the type constraints).

New mechanism in the Kernel library (ELKS, Eiffel Library Kernel
Standard):

b := deep_import (a)
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PREDEFINED CONSTRUCTS AND LIBRARIES

Define specific details (how many processors...) and scheduling
policies through libraries. 
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DESIGN BY CONTRACT
class BOUNDED_QUEUE [G] feature

put (x: G) is
-- Add x to queue.

do ...

end

remove: G is
-- Delete oldest element from queue.

require
not empty

do ...
ensure

not full
end

1

maxcount

next

oldest

capacity
require

not full

ensure
not empty
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THE CONTRACT MODEL (Continued)

item: is
-- Oldest element.

require
not empty

do
Result := ...

end
   ...

invariant

maxcount = capacity – 1
   0 <= oldest; oldest <= capacity
   0 <= next; next <= capacity
   abs (next – oldest) < capacity
end

1

maxcount

next

oldest

capacity
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THE CONTRACT OF A FEATURE

put OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Make sure queue not full.
(From postcondition:)

Make queue not empty, x added.

Supplier
(Satisfy postcondition:)

Insert x, making sure 
queue is not empty.

(From precondition:)

Simpler processing thanks 
to assumption that queue 
not full.
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THE CORRECTNESS OF A CLASS
 create a?make (...)

S1

a?f (...)

a?g (...)

a?  f (...)

(1-n) For every exported routine r: 

{INV and prer} bodyr {INV and postr}

(1-m) For every creation procedure cp: 

{precp} docp {INV}

The worst possible run-time error in object-
oriented software development: 

• Producing an object which does not satisfy
the invariant of its own class. 

S1S3

S4

S2
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PROVABILITY

Proof rule for routines: 

{ INV ?  }  Body (r) { INV ?  }

{ }  Call (r) { }

In other words: to prove the validity of  calls, it suffices to prove
(once!) the correctnes of the body

p ?  Pre (r)
p

q ? Post (r)
q

p ?  Pre (r)
p'

q ? Post (r)
q'

all
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EXPRESS MESSAGES

AND THE UNIT OF GRANULARITY

An express message is a message that must be treated right away,
interrupting any current routine call. 

• But: how do we preserve the consistency of objects (invariants)?

The model will support a restricted form of express messages, which
does not conflict with provability. 

Unit of granularity for mutual exclusion is routine call. 

But: can be interrupted, causing an exception. 
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THE CORRECTNESS OF A CLASS
 create a?make (...)

S1

a?f (...)

a?g (...)

a?  f (...)

(1-n) For every exported routine r: 

{INV and prer} bodyr {INV and postr}

(1-m) For every creation procedure cp: 

{precp} docp {INV}

The worst possible run-time error in object-
oriented software development: 

• Producing an object which does not satisfy
the invariant of its own class. 

S1S3

S4

S2
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THE CONTRACT OF A FEATURE

put OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Make sure queue not full.
(From postcondition:)

Make queue not empty, x added.

Supplier
(Satisfy postcondition:)

Insert x, making sure 
queue is not empty.

(From precondition:)

Simpler processing thanks 
to assumption that queue 
not full.
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WHAT BECOMES OF THE CONTRACT MODEL?
“NO HIDDEN CLAUSES” 

q: BOUNDED_QUEUE [X]

a: X
...
if not q ? full then

   q ?put (a)
end

Or: 
q? remove

q?put (x)

But: this does not work for separate threads of control! 

What do preconditions now mean? 
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RESERVING AN OBJECT

q: separate BOUNDED_QUEUE [X]; a: X
...
a := q ? item

... Other instructions (not calling remove) ...

q? remove

How do we guarantee that item and remove apply to the same
buffer element? 
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RESERVING AN OBJECT (Continued)

Just use encapsulation. Argument passing serves as reservation. If
object busy (processor not available), block object; processor will
service other object if possible. 
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RESERVING AN OBJECT (Continued)

With the class as shown on the following page, the call 

put (q)

will block until: 

• q is available. 

• The precondition not q? full is true. 

The new rule only affects: 

• Separate arguments. 

• Precondition clauses which include calls on separate targets (i.e. x? f
with x separate).   
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RESERVING AN OBJECT

class BUFFER_ACCESS [X] feature

   put (q: separate BOUNDED_QUEUE [G]; x: G) is

-- Insert x into q, waiting if necessary until there is room.

require
not q? full

do
q?put (x)

ensure

not q? empty

end
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RESERVING AN OBJECT (Continued)

remove (q: separate BOUNDED_QUEUE [G]) is
-- Remove an element from q, waiting if necessary
-- until there is such an element.

require
not q?empty

do
q? remove

ensure
not q? full

end

   item (q: separate BOUNDED_QUEUE [G]): G is
-- Oldest element not yet consumed

... Left to reader ...
end
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BASIC SEMANTIC RULES

If a is separate, a call of the form 

   p (..., a, ...)

will block the client until the object attached to a is available. 

In addition, if p has a precondition including a call of the form 

require
   ... Other clauses ...
  a ?f

(again for separate a), then the call will block until the precondition is
satisfied. 
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THE ORIGINAL PROOF RULE

{INV ?  }  Body (r) { INV ?  }

{ }  Call (r) { }

p ?  Pre (r)
p

q ? Post (r)
q

p ?  Pre (r)
p'

q ? Post (r)
q'
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THE NEW PROOF RULE

{INV ?  } Body (r) {INV ? }

{ }  Call (r) { }

Nonsep_pre (r): set of clauses in r’s precondition which do not involve
any separate calls.

Similarly for Nonsep_post (r). 

p? Nonsep_Pre (r)

p q
q? Nonsep_Post(r)

p ?  Nonsep_Pre (r)
p'

q ? Nonsep_Post (r)
q'
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WAIT BY NECESSITY

(SOURCE: DENIS CAROMEL)

r (..., t: separate SOME_TYPE, ...) is

   do
...

t?f (...)

other_instructions
   

end

When do we wait? 
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WAIT BY NECESSITY

For example: 
r (..., t: separate SOME_TYPE, ...) is

   do
...
t?p (...)

other_instruction_1
...
other_instruction_n

k := t?some_value
   end
Wait on queries (calls to attributes and functions), not procedure calls. 

WAIT HERE
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BLOCKING SEMANTICS

IS NOT ALWAYS APPROPRIATE

f: FILE
...
if f /= Void and then f? readable then

   f? some_input_routine

-- some_input_routine is any routine that reads
-- data from the file; its precondition is readable.

end
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DUELS

Request immediate service: immediate_service 
Accept immediate service: yield 

Challenger?

? ?Holder

normal_service immediate_service

insist Challenger waits
Exception in 
challenger

yield Challenger waits
Exception in holder;
serve challenger.
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DINING PHILOSOPHERS
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DINING PHILOSOPHERS

separate class PHILOSOPHER creation

make

inherit

   PROCESS
rename setup as getup end

feature {BUTLER}

   step is
do

think ; 
end

eat (left, right)
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feature {NONE}

-- The two required forks:
   left, right: separate FORK

   getup is
-- Take any necessary initialization action.

do ... end

   think is
-- Any appropriate action.

do ... end

eat (l, r: separate FORK) is
-- Eat, having grabbed l and r.

do
...

end
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A BINARY TREE CLASS
class BINARY_TREE [G] feature

   left, right: BINARY_TREE [G]

   nodes: INTEGER is
-- Number of nodes in this tree

do
Result := node_count (left) + node_count (right) + 1

end
feature {NONE}
   node_count (b: BINARY_TREE [G]): INTEGER is

-- Number of nodes in b
do

if b /= Void then
Result := b? nodes

end
end

end
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A BINARY TREE CLASS: PARALLEL VERSION

separate class BINARY_TREE [G] feature

   left, right: BINARY_TREE [G]

   ... Other features ...

   nodes: INTEGER

   update_nodes is
-- Update nodes to reflect number of nodes in this tree.

do
nodes := 1
compute_nodes (left); compute_nodes (right)
adjust_nodes (left); adjust_nodes (right)

end
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feature {NONE}
   compute_nodes (b: BINARY_TREE [G]) is

-- Update information about the number of nodes in b.
do

if b /= Void then
b?update_nodes

end
end

   adjust_nodes (b: BINARY_TREE [G]) is
-- Adjust number of nodes from those in b.

do
if b /= Void then

nodes := nodes + b?nodes
end

end
end
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EXAMPLES IN THE BOOK

Coroutines

Locking a resource —  semaphores

An elevator control system

A watchdog mechanism (execute an action, but take control back if not
done after t seconds).
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STATUS

Partial implementation.

• Unix (SunOS, Solaris, HP etc.).

• .NET

•

John Potter, UTS

hold a until a.some_condition then

...

end
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TWO-LEVEL ARCHITECTURE

As with other Eiffel products (EiffelVision graphical library, EiffelStore
relational database library), 2-level architecture:

• General-purpose top layer (SCOOP).

• Several architecture-specific variants at the bottom layer (SCOOP
handles).

Current handle is process-based. Next: multi-threading implementation.

SCOOP

HANDLE 1 HANDLE 2 HANDLE n
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ISSUES AND FUTURE PLANS

Issues: 

• Dual semantics of assertions. 

• Rule that target of a separate call must be formal argument. 

Hard issues:

• Deadlock avoidance.

• Proof rules and practical proofs (?).

• Fairness. 

More work: 

• Various implementations (distributed systems, shared memory,
coroutines...). 

• Processor-CPU association. 


