SUPPORTING MATERIAL
SiMpLE CoNCURRENT OBJECT-ORIENTED PROGRAMMING

Bertrand Meyer See chapter 32 of

Object-Oriented Software Construction,
second edition, Prentice Hall, 1997

where this discussion is complemented by its extensions to persistence
and object-oriented databases.

http://eiffel. i
ttp://eittel.com See: http://elffel.com

(File doc/oosc.html)

© Bertrand Meyer, 1995-2001

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING
EIF01-3 13 EIF 01-3 24
PLAN THE GOAL
1. The question. Provide a simple, general, easy to use concurrency and distribution

. mechanism for programming concurrent applications:
2. The constraints.
* Internet and Web programming.

3. A solution. , L

» Client-server applications.
4. Example sketches. » Distributed processing.

e Multi-threading.

» Multiple processes (Unix, Windows 95, Windows NT).

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 3 EIF01-3 4



THE QUESTION

What is the simplest extension of object
technology that will support all forms of
concurrent computation — in an elegant,
general and efficient way?

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

TYPES OF CONCURRENCY

Internet programming

Threads (e.g. Posix, Solaris, Java)
Unix / Windows processes

Local network

Coroutines

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

THE BASIC MECHANISM
OF OBJECT-ORIENTED COMPUTATION

Feature call (message passing):

x .f (a)

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

bg

CONCURRENT 0-O PROGRAMMING SHOULD BE EASY!
(BUT: IT'S NOT.)

Analogies between objects/classes and processes/process-types:
1e General decentralized structure, independent modules.

2+ Encapsulated behavior (a single cycle for a process; any number of
routines for a class).

3¢ Local variables (attributes of aclass, variables of aprocess or process
type).
4« Persistent data, keeping its value between successive activations.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING



BUT THE ANALOGY
BREAKS DOWN QUICKLY...

.. and leaves room to apparent incompatibilities:

Classes are repositories of services; it is fundamental that they
should be able to support more than one.

How will processes serve each other’s requests?

e The"inheritance anomaly"

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF 013

41

feature {NONE}

setup is deferred end
over: BOOLEAN is deferred end
step is deferred end

finalize is deferred end

end

Why limit ourselves to just one behavior when we can have as
many as we want?

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 11

10

CAPTURING COMMON BEHAVIORS
deferred class PROCESS feature
liveis
-- General structure with variants.
do

from setup until over loop

step
end
finalize

end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF 013

A PRINTER MECHANISM

class PRINTER inherit
PROCESS

rename over as off_line, finalize as stop end

feature
stop is
-- Go off-line.
do off_line :=true end
feature
step is
-- Execute individual actions of an iteration step.
do

start_job; process_job; finish_job
end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF 013



13

A PRINTER MECHANISM (Continued)

feature {NONE}

setup is
do ...end

start_job is
do ... end

process_job is

do ... end
finish_job is
do ... end

end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 1i5

THE BASIC TRIANGLE
OF COMPUTATION

Computing consists of applying operations to objects; to do so requires
the appropriate mechanisms — processors.

OPERATIONS OBJECTS

PROCESSORS

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 15

14

OTHER POSSIBLE FEATURES:

print_diagnostics
prepare_for_maintenance

restart_job

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 1i6

SEPARATE ENTITIES

A call of the form x.f (a) will have a different semantics depending on
whether Current and x are handled by the same or different processors.

The semantics must of course be immediately clear from the software
text. Need to declare whether client processor is the same as supplier
processor or another.

X: separate A
Contrast with the usual
X: A

which guarantees that objects attached to X will be handled by the same
processor as the current object.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 16



17 18

CONSISTENCY RULE SEPARATE ENTITIES AND CLASSES

In the assighment
b: separate BOUNDED QUEUE [SOME_TYPE]

X:i=y or:

if the source Y is separate, the target X must be separate too. separate class BOUNDED BUFFER [G] inherit

i BOUNDED_QUEUE [G]
Same rule for argument passing.

end

x: BOUNDED_BUFFER [SOME_TYPE]

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

it 50
CREATION COMMENTS

If X is separate, then the creation instruction
“Separate” declaration does not specify the processor.

create x Semantic difference between sequential and concurrent
computation narrowed down to difference for separate calls:

grabs a new processor, physical or virtual, and assigns it to e Precondition semantics

handle the object. e Argument passing semantics

Also: it is possible to obtain a separate object as the result of a « Creation semantics.
function. So processors can be allocated outside of Eiffel text
proper.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

19 EIF01-3 20



21

PROCESSOR ASSIGNMENT

The assignment of actual physical resources to (virtual) processors) is
entirely dynamic and EXTERNAL to the software text.

Simple notation: Concurrency Control File (CCF)
creation

procl: sales.microsoft.com (2),
coffees.whitehouse.gov (5), ...

proc2: 89.9.200.151 (1), ...

Physical resources may be Internet nodes, threads, Unix or Windows
processes, etc.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF 013

PREDEFINED CONSTRUCTS AND LIBRARIES

23

Define specific details (how many processors...) and scheduling
policies through libraries.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 23

22

REFERRING TO EXTERNAL OBJECTS

With
a: separate SOME_CLASS

the value of a at run time is areference to an object handled by another
processor. (Implemented as a proxy object.)

The normal Eiffel clone or deep_clone mechanism would result in
inconsistencies (and violates the type constraints).

New mechanism in the Kernel library (ELKS, Eiffel Library Kernel
Standard):

b :=deep_import (a)

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF 013

DESIGN BY CONTRACT

class BOUNDED QUEUE [G] feature 1 oldest

put (x: G) is
-- Add x to queue.
require
not full
o}

capacity
ensure
not empty
end
remove: G is maxcount

-- Delete oldest element from queue.
require next
not empty
do
ensure
not full
end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF 013



25

THE CONTRACT MODEL (Continued)

1 oldest
item: is
-- Oldest element.
require
not empty capacity
do
Result := ...
end
. . maxcount
invariant

maxcount = capacity — 1

0 <= oldest; oldest <= capacity

0 <= next; next <= capacity

abs (next — oldest) < capacity
end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

%7

THE CORRECTNESS OF A CLASS
create a-make(...)
o

(1-n) For every exported routine r:

a-f(..)
{INV and pre,} body, {INV and post,}

(1-m) For every creation procedure cp:

{precp} dog, {INV)

a-g(..)

> S1
S2
S3

The worst possible run-time error in object- l a.f(..)
oriented software development:

* Producing an object which does not satisfy S4
the invariant of its own class. +

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

27

26

THE CONTRACT OF A FEATURE

put OBLIGATIONS BENEFITS

(Satisfy precondition:) (From postcondition:)
Client [NE'CHRNE NN Yol @ {TI 1M Make queue not empty,x added.

(Satisfy postcondition:)

Supplier |insert x, making sure
gueue is not empty.

(From precondition:)

Simpler processing thanks
to assumption that queue

not full.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

PROVABILITY

Proof rulefor routines:

{INV? N\ P} Body ) {inv? /N\ a )

p? Pre(r) g ? Post (r)
{ N vrycap{ N\a }
p? Pre(r) g ? Post ()

In other words: to prove the validity of all calls, it suffices to prove

(once!) the correctnes of the body

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING




29

EXPRESS MESSAGES
AND THE UNIT OF GRANULARITY

An express message is a message that must be treated right away,
interrupting any current routine call.

* But: how do we preserve the consistency of objects (invariants)?

The model will support a restricted form of express messages, which
does not conflict with provability.

Unit of granularity for mutual exclusion is routine call.

But: can be interrupted, causing an exception.

put

Client

Supplier |insert x, making sure

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING
21
THE CONTRACT OF A FEATURE

OBLIGATIONS BENEFITS

(Satisfy precondition:) (From postcondition:)
WELCE NN VIEIEN Tol & {1l | W Make queue not empty,x added.

(Satisfy postcondition:) (From precondition:)

Simpler processing thanks

to assumption that queue
not full.

gueue is not empty.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

31

THE CORRECTNESS OF A CLASS
create a-make(...)
o

(1-n) For every exported routine r:

{INV and pre,} body, {INV and post,}

(1-m) For every creation procedure cp:

> S1

S2

{precp} docp {INV} S3
The worst possible run-time error in object-

oriented software development:

* Producing an object which does not satisfy S4

the invariant of its own class.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

30

a.f(.)

ag(..)

l af(.)

%2

WHAT BECOMES OF THE CONTRACT MODEL?

“NO HIDDEN CLAUSES”
g: BOUNDED_QUEUE [X]
a X

if not q -full then
g -put (a)
end

Or:
g-~remove

g-put (x)
But: this does not work for separate threads of control!
What do preconditions now mean?

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING



33 34

RESERVING AN OBJECT RESERVING AN OBJECT (Continued)

. A Just use encapsulation. Argument passing serves as reservation. If
q: separate BOUNDED_QUEUE [X]; a: X object busy (processor not available), block object; processor will

a:=q_.item service other object if possible.

... Other instructions (not calling remove) ...

g-remove

How do we guarantee that item and remove apply to the same
buffer element?

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING
EIF01-3 3%5 EIF01-3 3%6

RESERVING AN OBJECT (Continued) RESERVING AN OBJECT

class BUFFER_ACCESS [X] feature

With the class as shown on the following page, the call ,
put (q: separate BOUNDED_QUEUE [G]; x: G) is

put (a) -- Insert x into g, waiting if necessary until there is room.
will block until: require
not q - full
* qisavailable.
Th dition not q-full is t do
. e precondition not g -full is true.
P | q-put (x)
The new rule only affects: ensure

» Separate arguments. not g.empty

» Precondition clauses which include calls on separate targets (i.e. x -f
with x separate). end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 35 EIF01-3 36



37 38

RESERVING AN OBJECT (Continued) BASIC SEMANTIC RULES

remove (q: separate BOUNDED_QUEUE [G]) is
-- Remove an element from g, waiting if necessary

- until there is such an element If ais separate, a call of the form

require p(..,a, ...
not g -empty
do will block the client until the object attached to ais available.
g-remove
ensure In addition, if p has a precondition including a call of the form
not q ~full reauire
end q
. . ... Other clauses ...
item (q: separate BOUNDED_QUEUE [G]): G is
a.f
-- Oldest element not yet consumed
. Left to reader ... (again for separate a), then the call will block until the precondition is
end satisfied.
SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING
¥ *o
THE ORIGINAL PROOF RULE THE NEW PROOF RULE

{INV ? /\ } Body (r) {INV ? VAN q}

amw? N\ pyeoayn {mv? A a ) p? Nonsep_Pre (1) q? Nonsep_Post()
p? Pre(r) g ? Post ()
{ /\ » } call (1) { /\ «
{ /\ P’} call (1) { /\ a ) p ? Nonsep_Pre (r) g ? Nonsep_Post (r)
p? Pre(r) g ? Post ()

Nonsep_pre (r): set of clauses in r's precondition which do not involve
any separate calls.

Similarly for Nonsep_post (r).

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

39 EIF01-3 40



WAIT BY NECESSITY
(SOURCE: DENIS CAROMEL)

r(..,t: separate SOME_TYPE, ...)is

do

tf(...)

other_instructions

end

When do we wait?

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

BLOCKING SEMANTICS
IS NOT ALWAYS APPROPRIATE

f: FILE

if f /=Void and then f-readable then

f.some_input_routine

end

--some_input_routine is any routine that reads
-- data from the file; its precondition is readable.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

41

“h3

43

42

WAIT BY NECESSITY

For example:
r(...,t: separate SOME_TYPE, ...) is

do
t-p
oth

oth

(..)

er_instruction_1

er_instruction_n

k:=t.some_value < \WAI|T HERE

end

Wait on queries (calls to attributes and functions), not procedure calls.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

DUELS

‘a4

Request immediate service: immediate_service

Accept im

mediate service: yield

Challenger? | normal_service

immediate_service

?MHolder
Exception in
insist Challenger waits [challenger
Exception in holder;
yield Challenger waits |serve challenger.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

a4




EIF 013

DINING PHILOSOPHERS

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

feature {NONE}

-- The two required forks:
left, right: separate FORK

getup is
-- Take any necessary initialization action.
do ... end
think is

-- Any appropriate action.
do ... end

eat (I, r: separate FORK) is
-- Eat, having grabbed | and r.

do

end

EIF 013

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

45

7

47

46

DINING PHILOSOPHERS

separate class PHILOSOPHER creation

make

inherit
PROCESS
rename setup as getup end

feature {BUTLER}

step is
do
think ; eat (left, right)
end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING
EIF01-3 4%8

A BINARY TREE CLASS
class BINARY_TREE [G] feature

left, right: BINARY_TREE [G]

nodes: INTEGER is
-- Number of nodes in this tree
do
Result := node_count (left) + node_count (right) + 1
end
feature {NONE}
node_count (b: BINARY_TREE [G]): INTEGER is

-- Number of nodes in b
do

if b /=Void then
Result :=b.nodes
end

end end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 48



49

A BINARY TREE CLASS: PARALLEL VERSION

separate class BINARY_TREE [G] feature
left, right: BINARY_TREE [G]

... Other features ...
nodes: INTEGER

update_nodes is
-- Update nodes to reflect number of nodes in this tree.
do
nodes :=1
compute_nodes (left); compute_nodes (right)
adjust_nodes (left); adjust_nodes (right)
end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 4%1

EXAMPLES IN THE BOOK

Coroutines
Locking aresource — semaphores

An elevator control system

A watchdog mechanism (execute an action, but take control back if not

done after t seconds).

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 51

feature {NONE}
compute_nodes (b: BINARY_TREE [G]) is
-- Update information about the number of nodes in b.
do
if b /= Void then
b.update_nodes
end
end
adjust_nodes (b: BINARY_TREE [G]) is
-- Adjust number of nodes from those in b.
do
if b /= Void then
nodes :=nodes + b.nodes
end
end
end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF 013

STATUS

Partial implementation.
e Unix (SunQOSs, Solaris, HP etc.).
 .NET

John Potter, UTS

hold a until a.some_condition then

end

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF 013

50



53

TWO-LEVEL ARCHITECTURE

As with other Eiffel products (EiffelVision graphical library, EiffelStore
relational database library), 2-level architecture:

» General-purpose top layer (SCOOP).

» Several architecture-specific variants at the bottom layer (SCOOP
handles).

SCOOP

HANDLE 1 HANDLE 2 HANDLE n

Current handle is process-based. Next: multi-threading implementation.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 53

54

ISSUES AND FUTURE PLANS

Issues:
» Dual semantics of assertions.
* Rulethat target of a separate call must be formal argument.

Hard issues:

» Deadlock avoidance.

» Proof rules and practical proofs (?).
» Fairness.

More work:

e Various implementations (distributed systems, shared memory,
coroutines...).

* Processor-CPU association.

SIMPLE CONCURRENT OBJECT-ORIENTED PROGRAMMING

EIF01-3 54



