PLAN

AT THE EDGE OF

DESIGN BY CONTRACT 1. Design by Contract: background and scope

2. Issues to which I don’t know the solution

Bertrand Meyer
Interactive Software Engineering

http://www.eiffel.com

TOOLS EUROPE, Zurich, 12 March 2001

DESIGN BY CONTRACT 1 conTos DESIGN BY CONTRACT

DESIGN BY CONTRACT THE THREE QUESTIONS

Confluence of work from:

» Axiomatic semantics of programming (Hoare 1969-1972)

» “Proof of correctness of Data Representations” (Hoare 1972) What does it assume?
e “Constructive approach” (Dijkstra 1976)

e Abrial's Z (197)

» Abstract data types

What does it guarantee

What does it maintain?

» Object-oriented programming

e Reuse

DESIGN BY CONTRACT 3 conT 013 DESIGN BY CONTRACT

THE COST OF NOT ASKING A CLASS WITH CONTRACTS

LOS ANGELES, 9 November 2000. Failure of the Southwest's class WEB_PAGE inherit
main air traffic radar system was traced to new software unable GENERIC_WEB_PAGE
to recognize handoff data typed manually by Mexico controllers. feat“;e .

refresn iIs
The software installed Wednesday night is the same upgrade - Reload page from server
completed successfully at 19 other FAA radar centers. But require _ _
software designers didn't allow for information typed in by g valid_connection: connection.open
Mexico controllers handing off flights. if changed then update end
“The computer didn't recognize the information and it aborted” , a ensure

refreshed: old changed implies updated

spokesman said. “ A digit out of place could do it.” end

changed: BOOLEAN
invariant

valid_connection: connection /= Void
end -- class WEB_PAGE

DESIGN BY CONTRACT 5 DESIGN BY CONTRACT

APPLICATIONS EXAMPLE

» Analysis and design.

* Implementation: built-in reliability. .
P y Laser printer software at Hewlett-Packard, 1997-1998

e Testing, debugging, quality assurance.

. About 800,000 lines of legacy C code.
 Documentation.

Contracts: first emulated in C/C++ through macros, then Eiffel

» Exception handling. ft dded
software adde

e Inheritance.

. . . , C calls Eiffel
* Project management: preserving top designers’ work.

Some results:
» Major errors found in the legacy C code.
e Bugin chip.

See eiffel.com

DESIGN BY CONTRACT 7 DESIGN BY CONTRACT

NON-EIFFEL IMPLEMENTATIONS

UML: See OCL tutorial

C++: Macro packages

* Nana (NTU Darwin --> GNU)

* Todd Plessel (Lockheed Martin / EPA)
Java

» iContract

» Biscotti (MITRE)

DESIGN BY CONTRACT 9

THE CONTRACT WIZARD

Source: ISE
Applicable to Microsoft .NET assemblies
Origin can be any language

User interactively selects classes and routines, and adds
preconditions, postconditions and invariants

Wizard produces proxy classes

DESIGN BY CONTRACT 1

EMULATING CONTRACTS

Step 1: preconditions and postconditions

Systematic documentation

Next: invariants

Inheritance?

DESIGN BY CONTRACT

CLASS CORRECTNESS

create a.make (...)

(1-n) For every exported routine r:

{INV and pre,} do, {INV and post,}

(1-m) For every creation procedure cp:

{precp} do¢p {postc, and INV}

The worst possible erroneous run-time
situation in object-oriented software
development:

Producing an object which does not satisfy
the invariant of its own class.

DESIGN BY CONTRACT

10

12

CONTRACTS AND QUALITY ASSURANCE

A run-time assertion violation is the manifestation of a bug:

» Precondition violation: client bug.
» Postcondition or invariant violation: supplier bug.

DESIGN BY CONTRACT 13

CONTRACTS AND REUSE

The short form — i.e. the set of contracts governing a class —
should be the standard form of library documentation.

Examples:

* |ISE EiffelBench
e GEHR

DESIGN BY CONTRACT 15

CONTRACTS AND BUG TYPES

Preconditions are particularly useful to find bugs in client code:

your_list.insert (y, a+ b + 1)

class LIST [G] feature

COMPONENT insert (x: G; i: INTEGER) is
LIBRARY require
i >=

i <=count+1

DESIGN BY CONTRACT

CONTRACTS AND INHERITANCE

Issues: what happens, under inheritance, to
e Class invariants?

* Routine preconditions and postconditions?

DESIGN BY CONTRACT

14

16

INVARIANTS CONTRACTS AND INHERITANCE

ris
.=>- require
Invariant Inheritance rule 7
al: A A ensure
The invariant of a class automatically includes the .51 r() 7
invariant clauses from all its parents, “and” -ed
Correct call:
if al.? then
al.r (...) ris
Accumulated result visible in flat and flat-short forms. -- Here al.?%olds. - require
end ?
ensure
2
DESIGN BY CONTRACT 17 conToa DESIGN BY CONTRACT
ASSERTION REDECLARATION RULE KNOWN ISSUES:

THE INDIRECT INVARIANT EFFECT
» Precondition may only be kept or weakened. _
» Postcondition may only be kept or strengthened. Invariant of class A:

Eiffel rule:Redeclared version may not have require or ensure. forward.backward = Current
May have nothing (assertions kept by default), or
require else new_pre

backward
ensure then new_post forward

(A)

Resulting assertions are: (B)
original_precondition or new_pre

original_postcondition and new_post

DESIGN BY CONTRACT 19 conT 013 DESIGN BY CONTRACT

THE INDIRECT INVARIANT EFFECT

Operation in class B:

backward := Void

backward
forward =—>

(A)
(B)

DESIGN BY CONTRACT

DESIRABLE MODE OF REASONING

{SOME_PROPERTY holds of a}
Apply SOME_OPERATION to b.

{SOME_PROPERTY still holds of a}

Applicable to “expanded” values, e.g. integers:

{P (@)}

OP (b) -eg.b:=b+1

{P (2)}

DESIGN BY CONTRACT

21

23

PROOFS WILL REQUIRE...

... full axiomatization of dynamic aliasing

DESIGN BY CONTRACT

REFERENCES CAUSE ALIASING:

{a makes less than 50K}
b.raise_salary (1)

{What about a?}

@ - 49,999

®/

DESIGN BY CONTRACT

salary

22

24

NOT JUST IN PROGRAMMING

{I'heard that one of the CEQ’s in-laws makes less than 50K}

Memo to personnel: raise Jill's salary by one dollar

{7}

DESIGN BY CONTRACT 25

LINKED LISTS IN EIFFELBASE

(LINKED_LIST)
right right

first_
element > > T T

(LINKABLE) (LINKABLE) ;

Void

DESIGN BY CONTRACT 27

METAPHORS ETC.

“Your driver or your cook?”
(to Harpagon)

"Harpagon"

driver

cook

“The beautiful daughter of Leda”
“Menelas’s spouse”

“Paris’s lover”

DESIGN BY CONTRACT

COVARIANCE

transport: VEHICLE
register (v: VEHICLE)

transport: TRUCK
register (v: TRUCK)

DESIGN BY CONTRACT

26

28

THE CONTRACT LANGUAGE

How expressive should it be?

Should it permit function calls?

DESIGN BY CONTRACT 29

EXPRESSING HIGHER-LEVEL PROPERTIES

Use iterators.

Eiffel has agents , i.e. routine objects:

my_integer_list.for_all (agentis_positive (?))

with (in some class)
is_positive (x: INTEGER): BOOLEAN is do Result := (x > 0) end

or
{EMPLOYEE}.for_all (agent is_married)

with (in class EMPLOYEE):
is_positive (x: INTEGER): BOOLEAN is do Result := (x > 0) end

DESIGN BY CONTRACT 31

THE CONTRACT LANGUAGE

Language of boolean expressions (plus old):

* No predicate calculus (i.e. no quantifiers, ? or ?).

» Function calls permitted, e.g (in a STACK class):

put (x: G) is
-- Push x on top of stack
require

not full
do
ensure

not empty
end

remove is
-- Pop top of stack
require

not empty
do

ensure
not full

end

DESIGN BY CONTRACT

THE IMPERATIVE AND THE APPLICATIVE

do ensure
balance := balance—-sum balance = old balance —sum
PRESCRIPTIVE DESCRIPTIVE
How What
Operational “ Denotational”

Implementation

Specification

Instruction

Expression

Imperative

“Applicative”

DESIGN BY CONTRACT

DIJKSTRA, 1968

“GOTO Statement Considered Harmful”, Comm. ACM

“Our intellectual powers are rather geared to master
static relations and our powers to visualize processes
evolving in time are relatively poorly developed. For that
reason we should do (as wise programmers aware of
our limitations) our utmost to shorten the conceptual
gap between the static program and the dynamic
process, to make the correspondence between the
program (spread out in text space) and the process
(spread out in time) as trivial as possible.”

DESIGN BY CONTRACT 33

“EFFECT”

Change of state.

The state includes:
» Set of objects.
» Values of their fields (attributes)

» State of external devices (e.g. printers)

Values of local variables

DESIGN BY CONTRACT 35

FUNCTIONS IN CONTRACTS
SHOULD BE “ PURFE”

No “ effects”

Immediately denote mathematical functions

DESIGN BY CONTRACT 34

ARE ALL SIDE EFFECTS BAD?
Modify a local variable

f: SOME_TYPE is
local
x: T
do
... Do something to x ...

ond

DESIGN BY CONTRACT 36

ACCEPTABLE SIDE EFFECTS?

Concrete only, no abstract side effect
Complex numbers

Public features:
add, subtract, multiply, divide, x, y, rho, theta

Secret attributes:
internal_x, internal_y, internal_rho,
internal_theta, cartesian_available,
polar_available, update _cartesian, update_polar

Invariant includes:

cartesian_available or polar_available

DESIGN BY CONTRACT 37

LIST STRUCTURES

before after

annnn

count
_>
forth

start .
index

Implementing the function i_th:
position ;= index
go (i)
Result :=item
go (position)

DESIGN BY CONTRACT 39

CONCRETE SIDE EFFECT

X: REAL is
-- Abscissa of number

do

end

if not cartesian_available then
update_cartesian

end

Result := internal_x

DESIGN BY CONTRACT

ONCE FUNCTIONS

f: SOME_TYPE is

once

end

... Instructions ...

DESIGN BY CONTRACT

38

40

CREATION

f: SOME_TYPE is
do
create Result.make (...)

end

DESIGN BY CONTRACT

LANGUAGE RULES

A routine is pure if it is side-effect-free or declared as pure.
Side-effect free means:

* No assighment to attributes.
* No calls to non-pure routines.

* No creations (?).

Purity must be preserved under redeclaration.

Queries used in assertions must be pure.

DESIGN BY CONTRACT

41

43

NEW ENVISIONED EIFFEL CONSTRUCT

fis
require

pure
ensure

end

Declaring a routine as “pure” is a proof obligation that it doesn’t

produce “bad” side effects.

DESIGN BY CONTRACT

THE CALL-IN ISSUE

create a.make (...)

(1-n) For every exported routine r:

{INV and pre,} do, {INV and post,}

DESIGN BY CONTRACT

[

-A--+da-3-4a

a.f(.)

a.g

a.f(.)

42

UNQUALIFIED VS. QUALIFIED CALLS INVARIANT DOESN’T NEED TO
HOLD DURING ROUTINE:

Desired properties of calls:

ris
{pre,} r (...) {post,} -- Unqualified
do
{pre,} x.r (...) {post;} -- Qualified
s (...)
To be proved: -- INV not satisfied here
{pre,} do, {post,} -- If used in unqualifed calls only t(..)
{INV and pre,} do, {INV and post,} u(..)
-- If used in qualifed calls
end
DESIGN BY CONTRACT s DESIGN BY CONTRACT
WHAT ABOUT: AND THEN...
Concurrency

Timing assertions
ris i
Other assertions on performance
do

s (...)

-- INV not satisfied here

Quality of service assertions

x.t(..)
u(.)

end

DESIGN BY CONTRACT 47 conT 013 DESIGN BY CONTRACT

DESIGN BY CONTRACT

Confluence of work from:

Axiomatic semantics of programming (Hoare 1969-1972)
“Proof of correctness of Data Representations” (Hoare 1972)
“Constructive approach” (Dijkstra 1976)

Abrial’s Z (197)

Abstract data types

Object-oriented programming

Reuse

DESIGN BY CONTRACT 49

DESIGN BY CONTRACT 51

AN EXPLOSIVE COCKTAIL

Classes

Contracts

Dynamic aliasing

Procedures (state-changing operations)
Inheritance

Polymorphism and dynamic binding

DESIGN BY CONTRACT

50

