
DESIGN BY CONTRACTCONT 01-3 1

Bertrand Meyer
Interactive Software Engineering

http://www.eiffel.com

TOOLS EUROPE, Zürich, 12 March 2001

AT THE EDGE OF

DESIGN BY CONTRACT

DESIGN BY CONTRACTCONT 01-3 2

PLAN

1. Design by Contract: background and scope

2. Issues to which I don’t know the solution

DESIGN BY CONTRACTCONT 01-3 3

DESIGN BY CONTRACT

Confluence of work from:

• Axiomatic semantics of programming (Hoare 1969-1972)

• “Proof of correctness of Data Representations” (Hoare 1972)

• “Constructive approach” (Dijkstra 1976)

• Abrial’s Z (197)

• Abstract data types

• Object-oriented programming

• Reuse

DESIGN BY CONTRACTCONT 01-3 4

THE THREE QUESTIONS

What does it assume?

What does it guarantee

What does it maintain?

DESIGN BY CONTRACTCONT 01-3 5

THE COST OF NOT ASKING

LOS ANGELES, 9 November 2000. Failure of the Southwest's
main air traffic radar system was traced to new software unable
to recognize handoff data typed manually by Mexico controllers.

The software installed Wednesday night is the same upgrade
completed successfully at 19 other FAA radar centers. But
software designers didn't allow for information typed in by
Mexico controllers handing off flights.

“The computer didn't recognize the information and it aborted”, a
spokesman said. “A digit out of place could do it.”

DESIGN BY CONTRACTCONT 01-3 6

A CLASS WITH CONTRACTS

class WEB_PAGE inherit
GENERIC_WEB_PAGE

feature
refresh is

-- Reload page from server
require

valid_connection: connection.open
do

if changed then update end
ensure

 refreshed: old changed implies updated
end

…
changed: BOOLEAN

invariant
valid_connection: connection /= Void

end -- class WEB_PAGE

DESIGN BY CONTRACTCONT 01-3 7

APPLICATIONS

• Analysis and design.

• Implementation: built-in reliability.

• Testing, debugging, quality assurance.

• Documentation.

• Exception handling.

• Inheritance.

• Project management: preserving top designers’ work.

DESIGN BY CONTRACTCONT 01-3 8

EXAMPLE

Laser printer software at Hewlett-Packard, 1997-1998

About 800,000 lines of legacy C code.

Contracts: first emulated in C/C++ through macros, then Eiffel
software added

C calls Eiffel

Some results:

• Major errors found in the legacy C code.

• Bug in chip.

See eiffel.com

DESIGN BY CONTRACTCONT 01-3 9

NON-EIFFEL IMPLEMENTATIONS

UML: See OCL tutorial

C++: Macro packages

• Nana (NTU Darwin --> GNU)

• Todd Plessel (Lockheed Martin / EPA)

Java

• iContract

• Biscotti (MITRE)

DESIGN BY CONTRACTCONT 01-3 10

EMULATING CONTRACTS

Step 1: preconditions and postconditions

Systematic documentation

Next: invariants

Inheritance?

DESIGN BY CONTRACTCONT 01-3 11

THE CONTRACT WIZARD

Source: ISE

Applicable to Microsoft .NET assemblies

Origin can be any language

User interactively selects classes and routines, and adds
preconditions, postconditions and invariants

Wizard produces proxy classes

DESIGN BY CONTRACTCONT 01-3 12

CLASS CORRECTNESS
 create a.make (...)

S1

a.f (...)

a.g

a.f (...)

(1-n) For every exported routine r:

{INV and prer} dor {INV and postr}

(1-m) For every creation procedure cp:

{precp} docp {postcp and INV}

The worst possible erroneous run-time
situation in object-oriented software
development:

• Producing an object which does not satisfy
the invariant of its own class.

S1S3

S4

S2

DESIGN BY CONTRACTCONT 01-3 13

CONTRACTS AND QUALITY ASSURANCE

A run-time assertion violation is the manifestation of a bug:

• Precondition violation: client bug.

• Postcondition or invariant violation: supplier bug.

DESIGN BY CONTRACTCONT 01-3 14

CONTRACTS AND BUG TYPES

Preconditions are particularly useful to find bugs in client code:

YOUR

COMPONENT

your_list.insert (y, a + b + 1)

class LIST [G] feature
...
insert (x: G; i: INTEGER) is

require
i >= 0
i <= count + 1

LIBRARY

APPLICATION

DESIGN BY CONTRACTCONT 01-3 15

CONTRACTS AND REUSE

The short form — i.e. the set of contracts governing a class —
should be the standard form of library documentation.

Examples:

• ISE EiffelBench

• GEHR

DESIGN BY CONTRACTCONT 01-3 16

CONTRACTS AND INHERITANCE

Issues: what happens, under inheritance, to

• Class invariants?

• Routine preconditions and postconditions?

DESIGN BY CONTRACTCONT 01-3 17

INVARIANTS

Accumulated result visible in flat and flat-short forms.

Invariant Inheritance rule

The invariant of a class automatically includes the
invariant clauses from all its parents, “and”-ed

DESIGN BY CONTRACTCONT 01-3 18

CONTRACTS AND INHERITANCE

AC
a1: A

B

r is
require

?
ensure

?

r is
require

?
ensure

?

a1.r (...)
Correct call:

if a1.? then
a1.r (...)
-- Here a1.? ?holds.

end

...
D

DESIGN BY CONTRACTCONT 01-3 19

ASSERTION REDECLARATION RULE

• Precondition may only be kept or weakened.

• Postcondition may only be kept or strengthened.

Eiffel rule:Redeclared version may not have require or ensure.

May have nothing (assertions kept by default), or

Resulting assertions are:

original_precondition or new_pre

original_postcondition and new_post

require else new_pre

ensure then new_post

DESIGN BY CONTRACTCONT 01-3 20

KNOWN ISSUES:
THE INDIRECT INVARIANT EFFECT

Invariant of class A:

forward.backward = Current

(A)
(B)

backward
forward

DESIGN BY CONTRACTCONT 01-3 21

THE INDIRECT INVARIANT EFFECT

Operation in class B:

backward := Void

(A)
(B)

backward
forward

DESIGN BY CONTRACTCONT 01-3 22

PROOFS WILL REQUIRE...

... full axiomatization of dynamic aliasing

DESIGN BY CONTRACTCONT 01-3 23

DESIRABLE MODE OF REASONING

Applicable to “expanded” values, e.g. integers:

{SOME_PROPERTY holds of a}

Apply SOME_OPERATION to b.

{SOME_PROPERTY still holds of a}

{P (a)}

OP (b) -- e.g. b := b + 1

{P (a)}

DESIGN BY CONTRACTCONT 01-3 24

REFERENCES CAUSE ALIASING:

{a makes less than 50K}

b.raise_salary (1)

{What about a?}

salary49,999
a

b

DESIGN BY CONTRACTCONT 01-3 25

NOT JUST IN PROGRAMMING

{I heard that one of the CEO’s in-laws makes less than 50K}

Memo to personnel: raise Jill’s salary by one dollar

{?}

DESIGN BY CONTRACTCONT 01-3 26

METAPHORS ETC.

“Your driver or your cook?”
(to Harpagon)

“The beautiful daughter of Leda”

“Menelas’s spouse”

“Paris’s lover”

name
landlord

"Harpagon"

"Jacques"

driver

cook

DESIGN BY CONTRACTCONT 01-3 27

LINKED LISTS IN EIFFELBASE

Void

(LINKED_LIST)

(LINKABLE) (LINKABLE)

right right
first_

element

DESIGN BY CONTRACTCONT 01-3 28

COVARIANCE

DRIVER

TRUCKER

VEHICLE

TRUCK

transport: VEHICLE
register (v: VEHICLE)

transport: TRUCK
register (v: TRUCK)

DESIGN BY CONTRACTCONT 01-3 29

THE CONTRACT LANGUAGE

How expressive should it be?

Should it permit function calls?

DESIGN BY CONTRACTCONT 01-3 30

THE CONTRACT LANGUAGE

Language of boolean expressions (plus old):

• No predicate calculus (i.e. no quantifiers, ? or ?).

• Function calls permitted, e.g (in a STACK class):

put (x: G) is
- - Push x on top of stack

require

do
...

ensure

end

remove is
- - Pop top of stack

require

do
...

ensure

end

not full

not empty

not empty

not full

DESIGN BY CONTRACTCONT 01-3 31

EXPRESSING HIGHER-LEVEL PROPERTIES

Use iterators.

Eiffel has , i.e. routine objects:

my_integer_list.for_all (agent is_positive (?))

with (in some class)
is_positive (x: INTEGER): BOOLEAN is do Result := (x > 0) end

or

{EMPLOYEE}.for_all (agent is_married)

with (in class EMPLOYEE):
is_positive (x: INTEGER): BOOLEAN is do Result := (x > 0) end

agents

DESIGN BY CONTRACTCONT 01-3 32

THE IMPERATIVE AND THE APPLICATIVE

do
balance balance – sum

ensure
balance old balance – sum

PRESCRIPTIVE DESCRIPTIVE

How What
Operational “Denotational”

Implementation Specification

Instruction Expression

Imperative “Applicative”

:= =

DESIGN BY CONTRACTCONT 01-3 33

DIJKSTRA, 1968

“GOTO Statement Considered Harmful”, Comm. ACM

“Our intellectual powers are rather geared to master
static relations and our powers to visualize processes
evolving in time are relatively poorly developed. For that
reason we should do (as wise programmers aware of
our limitations) our utmost to shorten the conceptual
gap between the static program and the dynamic
process, to make the correspondence between the
program (spread out in text space) and the process
(spread out in time) as trivial as possible.”

DESIGN BY CONTRACTCONT 01-3 34

FUNCTIONS IN CONTRACTS
SHOULD BE “PURE”

No “effects”

Immediately denote mathematical functions

DESIGN BY CONTRACTCONT 01-3 35

“EFFECT”

Change of state.

The state includes:

• Set of objects.

• Values of their fields (attributes)

• State of external devices (e.g. printers)

• Values of local variables

DESIGN BY CONTRACTCONT 01-3 36

ARE ALL SIDE EFFECTS BAD?

Modify a local variable

f: SOME_TYPE is
local

x: T
do

... Do something to x ...

...
end

DESIGN BY CONTRACTCONT 01-3 37

ACCEPTABLE SIDE EFFECTS?

Concrete only, no abstract side effect

Complex numbers

Public features:
add, subtract, multiply, divide, x, y, rho, theta

Secret attributes:
internal_x, internal_y, internal_rho,
internal_theta, cartesian_available,
polar_available, update_cartesian, update_polar

Invariant includes:

cartesian_available or polar_available

DESIGN BY CONTRACTCONT 01-3 38

CONCRETE SIDE EFFECT

x: REAL is
-- Abscissa of number

do
if not cartesian_available then

update_cartesian
end
Result := internal_x

end

DESIGN BY CONTRACTCONT 01-3 39

LIST STRUCTURES

Implementing the function i_th:
position := index
go (i)
Result := item
go (position)

after
item

index

count1

forth

start

before

DESIGN BY CONTRACTCONT 01-3 40

ONCE FUNCTIONS

f: SOME_TYPE is

once

... Instructions ...

end

DESIGN BY CONTRACTCONT 01-3 41

CREATION

f: SOME_TYPE is

do

create Result.make (...)

end

DESIGN BY CONTRACTCONT 01-3 42

NEW ENVISIONED EIFFEL CONSTRUCT

f is
require

...
pure

...
ensure

...
end

Declaring a routine as “pure” is a proof obligation that it doesn’t
produce “bad” side effects.

DESIGN BY CONTRACTCONT 01-3 43

LANGUAGE RULES

A routine is pure if it is side-effect-free or declared as pure.

Side-effect free means:

• No assignment to attributes.

• No calls to non-pure routines.

• No creations (?).

Purity must be preserved under redeclaration.

Queries used in assertions must be pure.

DESIGN BY CONTRACTCONT 01-3 44

THE CALL-IN ISSUE
 create a.make (...)

S1

a.f (...)

a.g

a.f (...)

(1-n) For every exported routine r:

{INV and prer} dor {INV and postr}

S1S3

S4

S2

DESIGN BY CONTRACTCONT 01-3 45

UNQUALIFIED VS. QUALIFIED CALLS

Desired properties of calls:

{prer} r (...) {postr} -- Unqualified

{prer} x.r (...) {postr} -- Qualified

To be proved:

{prer} dor {postr} -- If used in unqualifed calls only

{INV and prer} dor {INV and postr}
-- If used in qualifed calls

DESIGN BY CONTRACTCONT 01-3 46

INVARIANT DOESN’T NEED TO
HOLD DURING ROUTINE:

r is

do

s (...)
-- INV not satisfied here

t (...)

u (...)

end

DESIGN BY CONTRACTCONT 01-3 47

WHAT ABOUT:

r is

do

s (...)
-- INV not satisfied here

x.t (...)
u (...)

end

DESIGN BY CONTRACTCONT 01-3 48

AND THEN...

Concurrency

Timing assertions

Other assertions on performance

Quality of service assertions

DESIGN BY CONTRACTCONT 01-3 49

DESIGN BY CONTRACT

Confluence of work from:

• Axiomatic semantics of programming (Hoare 1969-1972)

• “Proof of correctness of Data Representations” (Hoare 1972)

• “Constructive approach” (Dijkstra 1976)

• Abrial’s Z (197)

• Abstract data types

• Object-oriented programming

• Reuse

DESIGN BY CONTRACTCONT 01-3 50

AN EXPLOSIVE COCKTAIL

Classes

Contracts

Dynamic aliasing

Procedures (state-changing operations)

Inheritance

Polymorphism and dynamic binding

DESIGN BY CONTRACTCONT 01-3 51

